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Fast Electromagnetic Inversion of Inhomogeneous
Scatterers Embedded in Layered Media by Born

Approximation and 3-D U-Net
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Abstract— This letter presents a 3-D electromagnetic inver-
sion method based on the Born approximation (BA) and a
convolutional neural network (CNN), the 3-D U-Net. In the
training stage, the BA is first used to obtain the preliminary
3-D images of a series of homogeneous scatterers with regular
shapes that are further improved by the Monte Carlo method.
Then, these images are used to train the 3-D U-Net. In the
testing stage, inhomogeneous scatterers with complex shapes are
reconstructed by both the trained 3-D U-Net and the traditional
iterative method, variational Born iteration method (VBIM).
Their performance is evaluated and compared.

Index Terms— 3-D electromagnetic (EM) inversion, convo-
lutional neural network (CNN), variational Born iteration
method (VBIM).

I. INTRODUCTION

ELECTROMAGNETIC (EM) inversion is to determine the
model parameters of scatterers embedded in a certain

region from measured field data. It has wide applications for
biomedical imaging [1], airborne transient EMs [2], subsurface
detection [3], and so on. In the past decades, many EM
inversion methods have been developed. They are mainly
divided into two categories, the noniterative approximation and
rigorous iteration. The noniterative method gives the inversion
results fast but only works for weak scattering scenarios.
By contrast, the iterative method can be used to reconstruct the
scatterers with high contrasts, although its computation cost is
high. The detailed discussions of noniterative approximation
and iterative methods were given in [4]. In addition, irregular
and complex scatterers are more difficult to reconstruct, even
when the iterative method is adopted. This is because the data
equation used to solve the nonlinear inverse problem is usually
underdetermined [5]. The reconstructed structure still can be
distorted or the model parameters can deviate away from
the true values even when the misfit between the calculated
scattered field and the measured field is small.
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The EM inversion gives the model parameter distribution in
the inversion domain, which is composed of several discretized
cells. This is similar to a 2-D image, including discretized
pixels. Inspired by this analogy, we apply the convolutional
neural network (CNN) to improve the inversion results. The
CNN has been successfully applied to image processing, such
as object recognition [6] and image segmentation [7]. In recent
work, it was applied to nonlinear EM inversion. For example,
in [8], the noniterative method, backpropagation (BP), was
first used to obtain the initial solutions for a nonlinear problem.
They were then input into a 2-D U-Net to acquire the final
dielectric model parameters in the inversion domain. In [9],
a deep neural network (DNN) was used to replace the CNN
to accomplish parallel computation. However, these examples
are only limited to 2-D inverse problems. In this letter, we use
the 3-D U-Net to perform nonlinear 3-D inversion of inhomo-
geneous scatterers with complex shapes. In addition, the scat-
terers are placed inside a layered medium that is more practical
in engineering measurements compared with the homogeneous
background [8], [9]. The Born approximation (BA) and Monte
Carlo method (MCM) are jointly used to acquire the inputs of
the 3-D U-Net. We choose BA instead of BP because BA can
accommodate the low-frequency diffraction tomography and
thus is more adaptable for a wide frequency range [10].

This letter is organized as follows. In Section II, we first
briefly introduce the traditional iterative inversion and BA
methods used to solve the nonlinear data equation. Then,
the MCM used to refine the results of BA is discussed. Finally,
the configuration of CNN is given in detail. In Section III,
several numerical examples are presented, and the inversion
results from 3-D U-Net and the traditional iterative method,
variational Born iteration method (VBIM), are compared.
In Section IV, conclusions are drawn and discussions are
presented.

II. THEORY

The Born iteration process to solve the nonlinear inverse
problem includes the forward and inversion models. They are
solved alternately to update the model parameters. The BA
gives the model parameters directly without iteration. In strong
scattering scenarios, it causes large errors. Fortunately, this
shortcoming can be compensated by the 3-D U-Net.

A. Forward and Inversion Models
The forward model for EM scattering in the layered media

is formulated by the state equation, which can be expressed
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as [11]

Em
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tot − jωεb
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′)dr′ (1)

where χ = (ε − εb/εb) is the contrast function of the scatterers
and εb is the permittivity of the background medium. The
inversion model is formulated by the data equation [11], [12],
which can be expressed as
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where G
nm
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nm

HJ are the layered medium dyadic Green’s
functions (DGFs) [13] connecting the equivalent electric cur-
rent sources in the mth layer and the receivers in the nth layer,
and D is the computation domain enclosing the scatterers and
located in the mth layer.

In the forward scattering computation, (1) is discretized and
Em

tot in the mth layer is solved by the stabilized biconjugate
gradient fast Fourier transform (BCGS-FFT) [14]. In the
inverse scattering computation, (2) is discretized and the model
parameter χ is solved by VBIM [12]. This iteration continues
until the misfit between the measured scattered field and the
model calculated field reaches a stop criterion. When BA is
used, the forward computation is unnecessary. Em

tot in (2) is
replaced by Em

inc, and the model parameter χ is directly solved.
This is much faster than the iterative scheme.

B. MCM

The BA outputs the preliminary model parameters in the
inversion domain, which will be used to train or test the
3-D U-Net. The true model parameters are the outputs of
the U-Net in the training stage. However, the errors of the
results from BA are large for strong scenarios. Numerical
results show that the model parameter distribution of scatterers
tends to spread out and, thus, the outlines of the scatterers are
extended. In addition, clutters exist in the inversion domain,
which sometimes are erroneously judged as scatterers.

Since the BA gives the model parameter values in all
the discretized cells, we can use the MCM to estimate the
scatterer shape. Assume that the whole inversion domain is
divided into N discretized cells. Each cell has two states,
the “background” or the “scatterer.” We define the probability
of the “scatterer” of the ith cell as

Pi =
| εi − εb |

max
1≤i≤N

| εi − εb | (3)

where εi is the model parameter in the ith cell given by BA.
Obviously, a larger Pi value means that the ith cell is more like
a “scatterer” cell. Therefore, we can set a threshold to label all
the discretized cells in the inversion domain. The cell samples
labeled as “scatterer” will cluster together and form the rough
3-D scatterer outlines although some “background” cells are
also included. The cell samples labeled as “background”
include both partial true “background” cells and some “clutter”
cells. Their model parameters will be directly assigned as the

Fig. 1. Architecture of the 3-D U-Net. Its details can be found in [15].

Fig. 2. 3-D U-Net training and testing for nonlinear EM inversion.
(a) Inversion model has three layers. The scatterers are embedded in the
middle layer. (b) Variations of errors in the training process.

background medium parameters. In this letter, the threshold
for Pi is 7%. Although some true “background” cells cannot
be filtered out by this low threshold, they may be removed by
the following U-Net. Consequently, the 3-D U-Net training
will be improved if the refined model parameter distribution
from BA-MCM instead of BA is used as its input.

C. 3-D U-Net

In this letter, we use the 3-D U-Net in [15], which is origi-
nally proposed for segmenting biomedical images. As shown
in Fig. 1, the whole architecture is composed of two branches,
the contracting path (left) and the expansive path (right).
The contracting path extracts context information, while the
expansive path provides accurate localization. Specifically
speaking, in the contracting path, the main features of the
images are extracted in several steps of downsampling by
convolutions with different kernels. However, in the expansive
path, the main features acquired in the downsampling steps
are recovered for the whole image by upconvolutions. The
concatenations between the layers in the contracting path and
expansive path are used to compensate for the information
loss in the downsampling. This is important for nonlinear EM
inversion since the final reconstructed model parameters and
the preliminary 3-D images from BA share common features.

The batch normalization (BN) [16] in each convolution
is used to accelerate the convergence when the U-Net is
trained [15]. The Relu and Sigmoid serve for nonlinear map-
ping. In this way, complex neural networks can approximate
any nonlinear functions. Compared with the original U-Net
in [15], we slightly modify its structure by reducing the
number of convolution kernels so as to save training time,
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Fig. 3. Four inhomogeneous scatterers used for the 3-D U-Net testing. Only the 2-D xz slices are shown here. From the first row to the fourth row,
the structures of the scatterers become more and more complicated. The first column is the ground truth, and from the second column to the fifth column,
the inversion results from BA, MCM, U-Net, and VBIM are shown, respectively.

Fig. 4. 3-D isosurfaces of relative permittivity values reconstructed by U-Net.
The isovalue is (a) 2.2, (b) 2.6, (c) 2.3, and (d) 2.2.

Fig. 5. 3-D isosurfaces of relative permittivity values reconstructed by VBIM.
The isovalue is (a) 2.2, (b) 2.6, (c) 2.3, and (d) 2.2.
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preventing overfitting and improving its generalization ability.
We choose the mean square error (MSE) [17] between the
input and the output of the 3-D U-Net as the cost function for
training. It is defined as

MSE =
1

n1 × n2 × n3
×

n1∑
i=1

n2∑
j=1

n3∑
k=1

(p′ijk − pijk)2 (4)

where n1, n2, and n3 are three dimensions of the image, and
p′ijk and pijk are the obtained and true values in each pixel.

The parameters of the 3-D U-Net will be adjusted for each
training. The optimization method used in this letter is the
Adam optimizer [18]. Because partial data are used to validate
the U-Net after training, the MSE defined in (4) is also valid
for a validation error.

III. NUMERICAL RESULTS

In this section, we construct the 3-D U-Net based on the
deep learning framework Keras with the tensorflow support.
Three groups of data sets are used. They are training data sets,
validation data sets, and testing data sets. The 3-D U-Net is
trained 1000 times before being used for nonlinear inversion.

A. 3-D U-Net Training

As shown in Fig. 2(a), the model has three layers. The top
and bottom layers are air. The scatterers are embedded in the
middle layer. The inversion domain enclosing the scatterers
has the dimensions of 1.28 m × 1.28 m × 1.28 m, and it is
divided into 64 × 64 × 64 cells. The size of each cell
is Δx = Δy = Δz = 0.02 m. The relative permittivity
of the background medium of the middle layer is set as
2.0. There are two identical transmitter and receiver arrays.
They are placed in the top and bottom layers. Each array has
5 × 5 transmitters and 5× 5 receivers. Thus, there are totally
50 transmitters and 50 receivers, respectively. The polarization
of each transmitter is (1, 1, 1). Three operating frequencies,
160, 230, and 300 MHz, are used. One of the possible appli-
cations of such a two-side and multifrequency measurement
is the deep dormant tunnel detection by the cross-borehole
pulse radar [19]. We construct 1700 homogeneous scatterers
with four basic shapes, including cuboid, cube, sphere, and
cylinder. Their dielectric constants distribute between 2.05 and
3.3 randomly. Their sizes and positions change randomly in
the inversion domain. Among these 1700 data sets, 1360 sets
are used for training, and 340 sets are used for validation.
The measured scattered electric and magnetic field data are
synthesized by the BCGS-FFT solver. The input data for the
3-D U-Net are obtained by BA and then improved by MCM.
After training 1000 times in an RTX 2070 GPU which costs
around 60 h, the training MSE decreases to less than 10−5,
as shown in Fig. 2(b). At the same time, the validation MSE
becomes less than 10−4. For the nonlinear EM inversion, this
model misfit for the dielectric parameter is small enough [20].
This means that the U-Net after being trained 1000 times is
reliable for the 3-D inversion.

B. Nonlinear Inversion by 3-D U-Net

In the testing stage, we perform the nonlinear EM inversion
by the 3-D U-Net. Four inhomogeneous scatterers are recon-
structed. As shown in Fig. 3, the structures of the scatterers

become more and more complicated from case 1 to case 4.
In case 1, the scatterers include a sphere and a cuboid which
are not in touch. The radius of the sphere is 0.20 m. The
dimensions of the cuboid are 0.34 m × 0.30 m × 0.66 m.
The relative permittivity values are 2.25 and 2.59, respectively.
A cross shape scatterer is used in case 2, which includes
two perpendicular cuboids. They have the same dimensions
of 0.90 m × 0.18 m × 0.18 m. However, their relative permit-
tivity values are 2.71 and 3.16, respectively. In case 3, we use a
mushroom shape to test the 3-D U-Net. The radius of the half-
sphere is 0.32 m. Its relative permittivity is 2.94. The radius
and height of the cylinder are 0.16 and 0.46 m, respectively.
Its relative permittivity is 2.4. In case 4, four cuboids are
connected to a sphere symmetrically. The sphere has a radius
of 0.20 m. Its relative permittivity is 3.2. The four cuboids
have the same dimensions of 0.40 m × 0.23 m × 0.14 m.
However, the relative permittivity values are different. They
are 2.57 for the top and bottom cuboids and 2.72 for the left
and right cuboids.

Fig. 3 shows the ground truth and inversion results for four
cases. We can see that BA gives the preliminary inversion
results. However, both the reconstructed shapes and model
parameters are far from the true values. Especially, when the
scatterers are irregular, e.g., these in cases 3 and 4, the recon-
structed shapes by BA are severely distorted. The major
contribution of MCM is to sharpen the blurred boundaries of
the scatterers and exclude clutters in the inversion domain.
As a result, the 3-D U-Net has a high probability to discern
the scatterer boundary and the low probability to treat these
clutters as scatterers in the training stage or when executing the
full-wave inversion. In other words, the shapes of the scatterers
are refined by MCM before being input into the 3-D U-Net.
The fourth and fifth columns in Fig. 3 show the comparisons of
the 2-D xz slices reconstructed by the 3-D U-Net and VBIM.
Two observations are made as follows. First, the shapes of the
scatterers are better reconstructed by 3-D U-Net. The edges,
corners, and boundaries of the scatterers are clearly shown in
the results of U-Net. However, they are blurred in the results
of VBIM. The 3-D U-Net uses the CNN to recover the model
parameter distribution in the whole inversion domain from the
BA-MCM results. However, L2-norm cost function [20] is
adopted in VBIM. Nonlinear iterations are implemented to
minimize the L2-norm cost function to obtain the parameter
distribution. Consequently, the boundaries between scatterers
and the background medium are blurred. Second, the retrieved
model parameters by the 3-D U-Net are more accurate than
those by VBIM. In cases 1–3, the model parameters from
U-Net inversion match the true values well. By contrast,
the reconstructed parameters from VBIM tend to show the
nonuniform distribution in the scatterers. In the center region,
the retrieved permittivity is larger than the true value. Because
the L2-norm cost function results in the blurred boundary of a
scatterer, the smaller equivalent current in its periphery must
be compensated by the larger equivalent current in the center
region to match the scattered fields measured by the receiver
array. In case 4, both the U-Net and VBIM cannot reconstruct
the profiles well. Although the U-Net can distinguish the
distribution of permittivity values among four cuboids and the
sphere, the shapes are distorted. For the results of VBIM,
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Fig. 6. Variations of data misfits and model misfits. (a) Data misfits for
VBIM. (b) Model misfits for VBIM and U-Net.

the top cuboid is split into two slim bars. Figs. 4 and 5
show the 3-D isosurfaces of four scatterers by U-Net and
VBIM, respectively. Clearly, the shapes of the scatterers are
better reconstructed by the 3-D U-Net compared with VBIM.
In addition, almost no clutter shows up in the 3-D profiles by
U-Net. Fig. 6(a) shows the data misfits [20] of VBIM versus
iterations in four cases. We can see that the VBIM iteration
converges fastest in case 3. However, it still needs 16 iterations.
Fig. 6(b) shows the variations of model misfits [20] in four
cases. The model misfits decrease fast in the first few steps and
then almost remain unchanged. Case 1 has the smallest final
model misfit, while case 4 has the largest one. This is because
the scatterer in case 1 has the simplest structure, while the
scatterer in case 4 has the most complicated structure. Another
interesting observation is the sudden increase in the model
misfit for case 3 when VBIM is adopted. This is because the
mushroom profile is complicated and the reconstructed shape
may be severely distorted at the beginning although the data
misfit is decreased. We also include the model misfits of the
reconstructed results by BA, MCM, and U-Net in Fig. 6(b).
Because only the BA takes the time, i.e., the same as the time
for one-step iteration of VBIM, we put the model misfits of
BA, MCM, and U-Net in Fig. 6(b) as they are recorded in
the first step of VBIM iteration. The computation time cost
by MCM and U-Net can be neglected compared with the
time cost by BA. We can see that in four cases, BA gives
the largest model misfits, while the reconstructed results by
U-Net have the smallest model misfits. In cases 1–3, the final
model misfits of VBIM are larger than the model misfits
given by CNN. However, in case 4, they are almost the same.
When the structures of the scatterers are not very complicated,
the 3-D U-Net obviously outperforms the VBIM for both
the computation time and the accuracy. However, when the
scatterers have very complicated structures, the 3-D U-Net
only has the advantage of computation time over VBIM. The
accuracy is actually almost the same.

IV. CONCLUSION

In this letter, the BA and 3-D U-Net are combined to
invert for scatterers embedded in layered media. The BA first
outputs the preliminary 3-D model parameter distribution that
is further refined by MCM. The 3-D U-Net is originally used
for 3-D biological cell segmentation and is applied to the
nonlinear EM inversion in this letter. A series of homogeneous
scatterers with regular shapes is used to train the 3-D U-Net.
Then, four inhomogeneous scatterers with complex shapes
are input into the 3-D U-Net to carry out the fast nonlinear

inversion. The comparison between 3-D U-Net inversion and
the traditional VBIM method shows that the 3-D U-Net outper-
forms VBIM for both accuracy and efficiency. The future work
will be focused on the multiparametric inversion by the 3-D
U-net with multichannels, e.g., the reconstruction of arbitrary
anisotropic scatterers.
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